
Chapter 8 
 
 

ORBITAL MECHANICS 
 
 

Knowledge of orbital motion is essential for a full understanding of space operations.  
The vantage point of space can be visualized through the motion Kepler described and by 
comprehending the reasons for that motion as described by Newton.  Thus, the objectives 
here are to gain a conceptual understanding of orbital motion and become familiar with 
common terms describing that motion. 
 
 

A HISTORY OF  
THE LAWS OF MOTION1 

 
Early Cosmology 

 
This generation is far too 

knowledgeable to perceive the universe as 
early man saw it.  Each generation uses 
the knowledge of the previous generation 
as a foundation to build upon in the ever-
continuing search for comprehension.  
When the foundation is faulty, the tower 
of understanding eventually crumbles and 
a new building proceeds in a different 
direction.  Such was the case during the 
dark ages in medieval Europe and the 
Renaissance.  

The Babylonians, Egyptians and 
Hebrews each had various ingenious 
explanations for the movements of the 
heavenly bodies.  According to the 
Babylonians, the Sun, Moon and stars 
danced across the heavenly dome entering 
through doors in the East and vanishing 
through doors in the West.  The Egyptians 
explained heavenly movement with rivers 
in a suspended gallery upon which the 
Sun, Moon and planets sailed, entering 
through stage doors in the East and 
exiting through stage doors in the West.  

Though one may view these ancient 
cosmologies with a certain arrogance and 
marvel at the incredible creativity by 
which they devised such a picture of the 
universe, their observations were 
amazingly precise.  They computed the 

length of the year with a deviation of less 
than 0.001% from the correct value, and 
their observations were accurate, enabling 
them to precisely predict astronomical 
events.  Although based on mythological 
assumptions, these cosmological theories 
“worked.”  

Greece took over from Babylon and 
Egypt, creating a more colorful universe.  
However, the 6th century BC (the century 
of Buddha, Confucius and Lâo Tse, the 
Ionian philosophers and Pythagoras) was 
a turning point for the human species.  In 
the Ionian school of philosophy, rational 
thought was emerging from the 
mythological dream world.  It was the 
beginning of the great adventure in which 
the Promethean quest for natural 
explanations and rational causes would 
transform humanity more radically than in 
the previous two hundred thousand years. 

 
Astronomy 

 
Many early civilizations recognized the 

pattern and regularity of the stars’ and 
planets’ motion and made efforts to track 
and predict celestial events.  The 
invention and upkeep of a calendar 
required at least some knowledge of 
astronomy.  The Chinese had a working 
calendar at least by the 13th or 14th 
century BC.  They also kept accurate 
records for things such as comets, meteor 
showers, fallen meteorites and other 
heavenly phenomena.  The Egyptians 
were able to roughly predict the flooding 
of the Nile every year: near the time when 
the star Sirius could be seen in the dawn 

                                                           

 
 
AU Space Primer  7/23/2003 
 8 - 1 

1Much of this information comes from Arthur 
Koestler’s The Sleepwalkers. 



“The shape of the world must be a 
perfect sphere, and that all motion must 
be in perfect circles at uniform speed.” 

sky, rising just before the Sun.  The 
Bronze Age peoples in northwestern 
Europe left many monuments indicating 
their ability to understand the movement 
of celestial bodies.  The best known is 
Stonehenge, which was used as a crude 
calendar.  

 

The early Greeks initiated the orbital 
theories, postulating the Earth was fixed 
with the planets and other celestial bodies 
moving around it; a geocentric universe.  
About 300 BC, Aristarchus of Samos 
suggested that the Sun was fixed and the 
planets, including the Earth, were in 
circular orbits around the Sun; a 
heliocentric universe.  Although 
Aristarchus was more correct (at least 
about a heliocentric solar system), his 
ideas were too revolutionary for the time.  
Other prominent astronomers/philosophers 
were held in higher esteem and, since they 
favored the geocentric theory, 
Aristarchus’ heliocentric theory was 
rejected and the geocentric theory 
continued to be predominately accepted. 

This circular motion was so 
aesthetically appealing that Aristotle 
promoted this circular motion into a 
dogma of astronomy.  The 
mathematicians’ task was now to design a 
system reducing the apparent irregularities 
of planetary motion to regular motions in 
perfectly fixed circles.  This task would 
keep them busy for the next two thousand 
years. 

Perhaps the most elaborate and fanciful 
system was one Aristotle constructed 
using fifty-four spheres to account for the 
motions of the seven planets.2  Despite 
Aristotle’s enormous prestige, this system 
was so contrived that it was quickly 
forgotten.  In the 2nd century AD, 
Ptolemy modified and amplified the 
geocentric theory explaining the apparent 
motion of the planets by replacing the 
“sphere inside a sphere” concept with a 
“wheel inside a wheel” arrangement.  
According to his theory, the planets 
revolve about imaginary planets, which in 
turn revolve around the Earth.  Thus, this 
theory employed forty wheels:  thirty-nine 
to represent the seven planets and one for 
the fixed stars. 

Aristotle, one of the more famous 
Greek philosophers, wrote encyclopedic 
treatises on nearly every field of human 
endeavor.  Aristotle was accepted as the 
ultimate authority during the medieval 
period and his views were upheld by the 
Roman Catholic Church, even to the time 
of Galileo.  However, his expositions in 
the physical sciences in general, and 
astronomy in particular, were less sound 
than some of his other works.  
Nevertheless, his writings indicate the 
Greeks understood such phenomena as 
phases of the Moon and eclipses at least in 
the 4th century BC.  Other early Greek 
astronomers, such as Eratosthenes and 
Hipparchus, studied the problems 
confronting astronomers, such as:  How 
far away are the heavenly bodies?  How 
large is the Earth?  What kind of geometry 
best explains the observations of the 
planets’ motions and their relationships? 

Even though Ptolemy’s system was 
geocentric, this complex system more or 
less described the observable universe and 
successfully accounted for celestial 
observations.  With some later 
modifications, his theory was accepted 
with absolute authority throughout the 
Middle Ages until it finally gave way to 
the heliocentric theory in the 17th century. 
 
Modern Astronomy 
 
Copernicus 

 
In the year 1543, some 1,800 years 

after Aristarchus proposed a heliocentric 
system, a Polish monk named Nicolas 

The Greeks were under the influence of 
Plato’s metaphysical understanding of the 
universe, which stated:                                                             
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2In this instance the seven “planets” include the 
Sun, Moon, Mercury, Venus, Mars, Jupiter, and 
Saturn. 



Koppernias (better known by his Latin 
name, Copernicus) revived the 
heliocentric theory when he published De 
Revolutionibus Orbium Coelestium (On 
the Revolutions of the Celestial Spheres).  
This work represented an advance, but 
there were still some inaccuracies.  For 
example, Copernicus thought that the 
orbital paths of all planets were circles 
with their centers displaced from the 
center of the sun.  

Tycho and Kepler’s relationship was 
far from a great friendship.  It was short 
(eighteen months) and fraught with 
controversy.  This brief relationship ended 
when Tycho De Brahe, the meticulous 
observer who introduced precision into 
astronomical measurement and 
transformed the science, became 
terminally ill and died in 1601. 

 
Kepler 

Copernicus did not prove that the Earth 
revolves about the sun; the Ptolemic 
system, with some adjustments, could 
have accounted just as well for the 
observed planetary motion.  However, the 
Copernican system had more ascetic 
value.  Unlike the Ptolemic system, it was 
elegant and simple without having to 
resort to artful wheel upon wheel 
structures.  Although it upset the church 
and other ruling authorities, Copernicus 
made the Earth an astronomical body, 
which brought unity to the universe. 

 
Johannes Kepler was born in 

Wurttemberg, Germany, in 1571.  He 
experienced an unstable childhood that, 
by his own accounts, was unhappy and 
ridden with sickness.  However, Kepler’s 
genius propelled him through school and 
guaranteed his continued education.   

Kepler studied theology and learned 
the principles of the Copernican system.  
He became an early convert to the 
heliocentric hypothesis, defending it in 
arguments with fellow students. 

 In 1594, Kepler was offered a position 
teaching mathematics and astronomy at 
the high school in Gratz.  One of his 
duties included preparing almanacs 
providing astronomical and astrological 
data.  Although he thought astrology, as 
practiced, was essentially quackery, he 
believed the stars affected earthly events. 

Tycho De Brahe 
 
Three years after the publication of De 

Revolutionibus, Tyge De Brahe was born 
to a family of Danish nobility.  Tycho, as 
he came to be known, developed an early 
interest in astronomy and made significant 
astronomical observations as a young 
man.  His reputation gained him royal 
patronage and he was able to establish an 
astronomical observatory on the island of 
Hveen in 1576.  For 20 years, he and his 
assistants carried out the most complete 
and accurate astronomical observations 
yet made.  

During a lecture having no relation to 
astronomy, Kepler had a flash of insight; 
he felt with certainty that it was to guide 
his thoughts throughout his cosmic 
journey.  Kepler had wondered why there 
were only six planets and what 
determined their separation.  This flash of 
insight provided the basis for his 
revolutionary discoveries.  Kepler 
believed that each orbit was inscribed 
within a sphere that enclosed a perfect 
solid3 within which existed the next 
orbital sphere and so on for all the planets.  

Tycho was a despotic ruler of Hveen, 
which the king could not sanction.  Thus, 
Tycho fell from favor, leaving Hveen in 
1597 free to travel.  He ended his travels 
in Prague in 1599 and became Emperor 
Rudolph II’s Imperial Mathematicus.  It 
was during this time that a young 
mathematician, who would also become 
an exile from his native land, began 
correspondence with Tycho.  Johannes 
Kepler joined Tycho in 1600 and, with no 
means of self-support, relied on Tycho for 
material well being. 
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3A perfect solid is a three dimensional geometric 
figure  whose faces are identical and are regular 
polygons.  These solids are:  (1) tetrahedron 
bounded by four equilateral triangles, (2) cube, (3) 
octahedron (eight equilateral triangles), (4) do-
decahedron (twelve pentagons), and (5) icosahe-
dron (twenty equilateral triangles).  



Kepler’s Laws He did not believe these solids actually 
existed, but rather, God created the 
planetary orbits in relation to these perfect 
solids.  However, Kepler made the errant 
connection that this was the basis of the 
divine plan, because there are only five 
regular solids and there were only six 
known planets. 

 
Kepler’s earth-shaking discoveries 

came in anything but a straightforward 
manner.  He struggled through tedious 
calculations for years just to find that they 
led to false conclusions.  Kepler stumbled 
upon his second law (which is actually the 
one he discovered first) through a 
succession of canceling errors.  He was 
aware of these errors and in his 
explanation of why they canceled he got 
hopelessly lost.  In the struggle for the 
first law (discovered second), Kepler 
seemed determined not to see the solution.  
He wrote several times telling friends that 
if the orbits were just an ellipse, then all 
would be solved, but it wasn’t until much 
later that he actually tried an ellipse.  In 
his frustrating machinations, he derived an 
equation for an ellipse in a form he did not 
recognize4.  He threw out his formula 
(which described an ellipse) because he 
wanted to try an entirely new orbit:  an 
ellipse5.  

Kepler explained his pseudo-
discoveries in his first book, the 
Mysterium Cosmographicum (Cosmic 
Mystery).  Although based on faulty 
reasoning, this book became the basis for 
Kepler’s later great discoveries.  The 
scientific and metaphysical communities 
at the time were divided as to the worth of 
this first work.  Kepler continued working 
toward proving his theory and in doing so, 
found fault with his enthusiastic first 
book.  In his attempts at validation, he 
came to realize he could only continue 
with Tycho’s data—but he did not have 
the means to travel and begin their 
relationship.  Fortunately for the 
advancement of astronomy, the power of 
the Catholic Church in Gratz grew to a 
point where Kepler, a Protestant, was 
forced to quit his post.  He then traveled 
to Prague where his short tumultuous 
relationship with Tycho began.  On 4 
February 1600, Kepler finally met Tycho 
De Brahe and became his assistant.  

 
Kepler’s 1st Law  
(Law of Ellipses) 

 
The orbits of the planets are 
ellipses with the Sun at one 
focus. 

Tycho originally set Kepler to work on 
the motion of Mars, while he kept the 
majority of his astronomical data secret.  
This task was particularly difficult 
because Mars’ orbit is the second most 
eccentric (of the then known planets) and 
defied the circular explanation.  After 
many months and several violent 
outbursts, Tycho sent Kepler on a mission 
to find a satisfactory theory of planetary 
motion (the study of Mars continued to be 
dominant in this quest); one compatible 
with the long series of observations made 
at Hveen. 

                                                           
4In modern denotation, the formula is: 

After Tycho’s death in 1601, Kepler 
became Emperor Rudolph’s Imperial 
Mathematicus.  He finally obtained 
possession of the majority of Tycho’s 
records, which he studied for the next 
twenty-five years of his life. 

 R=1+ecos(β )  
where R is the distance from the Sun, β the longi-
tude referred to the center of the orbit, and e the 
eccentricity. 
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5After accepting the truth of his elliptical hypothe-
sis, Kepler eventually realized his first equation 
was also an ellipse.  



 
Later Sir Isaac Newton found that 

certain refinements had to be made to 
Kepler’s first law to account for 
perturbing influences.  Neglecting such 
influences (e.g., atmospheric drag, mass 
asymmetry and third body effects), the 
law applies accurately to all orbiting 
bodies.   

Figure 8-1 shows an ellipse where Fl is 
one focus and F2 is the other.  This 
depiction illustrates that, by definition, an 
ellipse is constructed by joining all points 
that have the same combined distance (D) 
between the foci. 

The maximum diameter of an ellipse is 
called its major axis; the minimum 
diameter is the minor axis.  The size of an 
ellipse depends in part upon the length of 
its major axis.  The shape of an ellipse is 
denoted by eccentricity (e) which is the 
ratio of the distance between the foci to 
the length of the major axis (see Orbit 
Geometry section). 

The path of ballistic missiles (not 

including the powered and reentry 
portion) are also ellipses; however, they 

happen to intersect the Earth’s surface 
(Fig.  8-2). 

With Kepler’s second law, he was on 
the trail of Newton’s Law of Universal 
Gravitation.  He was also hinting at 
calculus, which was not yet invented.  

 
Kepler’s 2nd Law 

(Law of Equal Areas) 
 

The line joining the planet to 
the Sun sweeps out equal 
areas in equal times. 

 
Based on his observation, Kepler 

reasoned that a planet’s speed depended 
on its distance to the Sun.  He drew the 
connection that the Sun must be the 
source of a planet’s motive force. 

 
Fig.  8-1.  Ellipse with axis 

With circular orbits, Kepler’s second 
law is easy to visualize (Fig.  8-3).  In a 
circular orbit an object’s speed and radius 
both remain constant, and therefore, in a 
given interval of time it travels the same 

distance along the circumference of the 
circle.  The areas swept out over these 
intervals are equal. 

 
Fig.  8-3.  Kepler’s 2nd Law 

B allis tic  M iss ile

 
Fig.  8-2.  Ballistic Missile Path 

However, closed orbits in general are 
not circular but instead elliptical with.non-
zero eccentricity (An ellipse with zero 
eccentricity is a circle6 see pg. 8-11).  
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6That is, naturally occurring orbits have some non-
zero eccentricity.  A circle is a special form of an 
ellipse where the eccentricity is zero.  Most artifi-



Kepler’s second law isn’t quite as obvious 
when applied to an ellipse.  Figure  8-4 
depicts an elliptical orbit where two equal 
areas are swept out in equal intervals of 
time but are not symmetric.  It is also 
apparent from Fig 8-4 the closer a planet 
is to the Sun (also, any satellite to its 
prime mover, like the Earth) the faster it 

travels7. 
Kepler discovered his third law ten 

years after he published the first two in 
Astronomia Nova (New Astronomy).  He 
had been searching for a relationship 
between a planet’s period and its distance 
from the Sun since his youth.  Kepler was 
looking at harmonic relationships in an 
attempt to explain the relative planetary 
spacing.  After many false steps and with 
dogged persistence, he discovered his 
famous relationship: 

 
Kepler’s 3rd Law 

(Law of Harmonics) 
 

The squares of the periods of 
revolution for any two planets 
are to each other as the cubes 

of their mean distances from 
the Sun.8 
 
Kepler’s 3rd Law directly relates the 

square of the period to the cube of the 
mean distance for orbiting objects.  He 
believed in an underlying harmony in 
nature.  It was a great personal triumph 
when he found a simple algebraic 
relationship, which he believed to be 
related to musical harmonics. 

 
Fig.  8-4.  An Elliptical Orbit 

 
Isaac Newton  

 
On Christmas Day 1642, the year 

Galileo died, there was born a male infant 
tiny and frail, Isaac Newton—who would 
alter the thought and habit of the world. 

Newton stood upon the shoulders of 
those who preceded him; he was able to 
piece together Kepler’s laws of planetary 
motion with Galileo’s ideas of inertia and 
physical causes, synthesizing his laws of 
motion and gravitation.  These principles 
are general and powerful, and are 
responsible for much of our technology 
today. 

Newton took a circuitous route in 
formulating his hypotheses.  In 1665, an 
outbreak of the plague forced the 
University of Cambridge to close for two 
years.  During those two years, the 23-
year-old genius conceived the law of 
gravitation, the laws of motion and the 
fundamental concepts of differential 
calculus.  Due to some small 
discrepancies in his explanation of the 
Moon’s motion, he tossed his papers 
aside; it would be 20 years before the 
world would learn of his momentous 
discoveries. 

                                                                                   
                                                          

Edmund Halley asked the question that 
brought Newton’s discoveries before the 
world.  Halley was visiting Newton at 
Cambridge and posed the question:  “If 
the Sun pulled on the planets with a force 
inversely proportional to the square of the 

cial satellites are predominately in orbits that are 
as close to circular as we can achieve. 
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8In mathematical terms:
P
a

k
2

3 = , where P is 

the orbital period, a is the semi-major axis, which 
is the average orbital distance, and k is a constant. 

7Kepler’s second law is basically stating that an-
gular momentum remains constant, but the concept 
of angular momentum wasn’t invented when he 
formulated his laws. 



distances, in what paths ought they to 
go?”  To Halley’s astonishment, Newton 
replied without hesitation:  “Why in 
ellipses, of course.  I have already 
calculated it and have the proof among my 
papers somewhere.”  Newton was 
referring to his work during the plague 
outbreak 20 years earlier and in this 
casual way, his great discovery was made 
known to the world. 

Halley encouraged his friend to 
completely develop and publish his 
explanation of planetary motion.  The 
result appeared in 1687 as The 
Mathematical Principles of Natural 
Philosophy, or simply the Principia.  

 
Newton’s Laws 
 

As we’ve seen, many great thinkers 
were on the edge of discovery, but it was 
Newton that took the pieces and 
formulated a grand view that was 
consistent and capable of describing and 
unifying the mundane motion of a “falling 
apple” and the motion of the planets:9 

 
Newton’s 1st Law 

(Inertia) 
 

Every body continues in a state 
of uniform motion in a straight 
line, unless it is compelled to 
change that state by a force 
imposed upon it. 

 
This concise statement encapsulates the 

general relationship between objects and 
causality.  Newton combined Galileo’s 
idea of inertia with Descartes’ uniform 
motion (motion in a straight line) to create 
his first law.  If an object deviates from 
rest or motion in a straight line with 
constant speed, then some force is being 
applied. 

Newton’s first law describes 
undisturbed motion; inertia, accordingly, 

is the resistance of mass to changes in its 
motion.  His second law describes how 
motion changes.  It is important to define 
momentum before describing the second 
law.  Momentum is a measure of an 
object’s motion.  Momentum ( vp) is a 
vector quantity defined as the product of 
an object’s mass (m) and its relative 
velocity ( vv )10. 

Newton’s second law describes the 
relationship between the applied force, the 

mass of the object and the resulting 
motion: 

vm=p vv
 

 
Newton’s 2nd Law 

(Momentum) 
 

When a force is applied to a 
body, the time rate of change 
of momentum is proportional 
to, and in the direction of, the 
applied force. 

 
When we take the time rate of change of 
an object’s momentum (essentially 
differentiate momentum with respect to 
time, dp dtv ), this second law becomes 
Newton’s famous equation:11 
 
 

Newton continued his discoveries and 
with his third law, completed his grand 
view of motion: 

v vF = ma  

                                                           
10Velocity is an inertial quantity and, as such, is 
relative to the observer.  Momentum, as measured, 
is also relative to the observer. 
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11The differentiation of momentum with respect to 
time actually gives 

v v vF = mv + mv& &  where m is 
the rate of change of mass and 

&
v&v is the rate of 

change of velocity which is acceleration 
va .  In 

simple cases we assume that the mass doesn’t 
change, so m =  and the equation reduces to & 0v v v vF = mv F = m⇒

&
a& .  For an accelerating 

booster the m term is not zero. 

9We still essentially see the Universe in Newto-
nian terms; Einstein’s general relativity and quan-
tum mechanics are a modification to Newtonian 
mechanics, but have yet to be unified into a single 
grand view. 



Newton’s Derivation of Kepler’s Laws  
  

Newton’s 3rd Law Kepler’s laws of planetary motion are 
empirical (found by comparing vast 
amounts of data in order to find the 
algebraic relationship between them); and 
describe the way the planets are observed 
to behave.  Newton proposed his laws as a 
basis for all mechanics.  Thus Newton 
should have been able to derive Kepler’s 
laws from his own, and he did:  

(Action-Reaction) 
 

For every action there is a 
reaction that is equal in 
magnitude but opposite in 
direction to the action. 
 
This law hints at conservation of 

momentum; if forces are always balanced, 
then the objects experiencing the opposed 
forces will change their momentum in 
opposite directions and equal amounts. 

 
 
Kepler’s First Law:  If two 
bodies interact gravitationally, 
each will describe an orbit that 
can be represented by a conic 
section about the common 
center of mass of the pair. In 
particular, if the bodies are 
permanently associated, their 
orbits will be ellipses. If they 
are not permanently 
associated, their orbits will be 
hyperbolas. 

Newton combined ideas from various 
sources in synthesizing his laws.  Kepler’s 
laws of planetary motion were among his 
sources and provided large scale 
examples.  Newton synthesized his 
concept of gravity, but thought that one 
must be mad to believe in a force that 
operated across a vacuum with no 
material means of transport. 

Newton theorized gravity, which he 
believed to be responsible for the “falling 
apples” and the planetary motion, even 
though he could not explain gravity or 
how it was transmitted.  In essence, 
Newton developed a system that described 
man’s experience with his environment. 

 
 
Kepler’s Second Law:  If two 
bodies revolve about each 
other under the influence of a 
central force (whether they are 
in a closed orbit or not), a line 
joining them sweeps out equal 
areas in the orbit plane in 
equal intervals of time. 

 
Universal Gravitation 

 
Every particle in the universe 
attracts every other particle with 
a force that is proportional to the 
product of the masses and 
inversely proportional to the 
square of the distance between 
the particles. 

 
 
Kepler’s Third Law:  If two 
bodies revolve mutually about 
each other, the sum of their 
masses times the square of 
their period of mutual revolution 
is in proportion to the cube of 
their semi-major axis of the 
relative orbit of one about the 
other. 

 

F G M m
Dg

1 2
2= 






  

  Where Fg is the force due to gravity, G is 
the proportionality constant, M1 and m2 
the masses of the central and orbiting 
bodies, and D the distance between the 
two bodies.  

 
ORBITAL MOTION 
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Newton’s laws of motion apply to all 
bodies, whether they are scurrying across 
the face of the Earth or out in the vastness 



of space.  By applying Newton’s laws one 
can predict macroscopic events with great 
accuracy.  

 
Motion 

 
According to Newton’s first law, 

bodies remain in uniform motion unless 
acted upon by an external force; that 
uniform motion is in a straight line.  This 
motion is known as inertial motion, 
referring to the property of inertia, which 
the first law describes. 

Velocity is a relative measure of 
motion.  While standing on the surface of 
the Earth, it seems as though the 
buildings, rocks, mountains and trees are 
all motionless; however, all of these 
objects are moving with respect to many 
other objects (Sun, Moon, stars, planets, 
etc.).  Objects at the equator are traveling 
around the Earth’s axis at approximately 
1,000 mph; the Earth and Moon system is 
traveling around the Sun at 66,000 mph; 
the solar system is traveling around the 
galactic center at approximately 250,000 
mph, and so on and so forth.  

The only way motion can be 
experienced is by seeing objects change 
position with respect to one’s location.  
Change in motion may be experienced by 
feeling the compression or tension within 
the body due to acceleration (sinking in 
the seat or being held by seat belts).  In 
some cases, acceleration cannot be felt, as 
in free-fall.  Acceleration is felt when the 
forces do not operate equally on every 
particle in the body; the compression or 
tension is sensed in the body’s tissues.  
With this feeling and other visual clues, 
any change in motion that has occurred 
may be detected.  Gravity is felt as 
opposing forces and the resulting 
compression of bodily tissues.  In free-
fall, acceleration is not felt because every 
particle in the body is experiencing the 
same force and so there is no tissue 
compression or tension; thus, no physical 
sensation.  What is felt is the sudden 
change from tissue compression to a state 
of no compression. 

According to Newton’s second law, for 
a body to change its motion there must be 

a force imposed upon it.  Everyone has 
experience with changing objects’ motion 
or compensating for forces that change 
their motion.  An example is playing 
catch—when throwing or catching a ball, 
its motion is altered; thus, gravity is 
compensated for by throwing the ball 
upward by some angle allowing gravity to 
pull it down, resulting in an arc.  When 
the ball leaves the hand it starts 
accelerating toward the ground according 
to Newton’s laws (at sea level on the 
Earth the acceleration is approximately 
9.81 m/s or 32.2 ft/s).  If the ball is 
initially motionless, it will fall straight 
down.  However, if the ball has some 
horizontal motion, it will continue in that 
motion while accelerating toward the 

ground.  Figure  8-5 shows a ball released 
with varying lateral (or horizontal) 
velocities. 

Horizontal Velocity
Fig.  8-5.  Newton’s 2nd Law 

In Figure 8-5, if the initial height of the 
ball is approximately 4.9 meters (16.1 ft) 
above the ground, then at sea level, it 
would take 1 second for the ball to hit the  
 

Table 8-1.  Gravitational Effects 
Horizontal 
 Velocity 

Distance (@ 1 sec) 
 Vertical Horizontal 

 1 
 2 
 4 
 8 
 16 

 4.9 
 4.9 
 4.9 
 4.9 
 4.9 

 1 
 2 
 4 
 8 
 16 

All values are in meters and meters/second. 
ground.  How far the ball travels along the 
ground in that one second depends on its 
horizontal velocity (see Table 8-1). 

Eventually one would come to the 
point where the Earth’s surface drops 
away as fast as the ball drops toward it.  
As Fig.  8-6 depicts, the Earth’s surface 
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curves down about 5 meters for every 8 
km.   

 
At the Earth’s surface (without 

contending for the atmosphere, mountains 
or other structures), a satellite would have 
to travel at approximately 8 km/sec (or 
about 17,900 mph) to fall around the 
Earth without hitting the surface; in other 
words, to orbit.12   

 
Figure 8-7 shows how differing 

velocity affects a satellite’s trajectory or 
orbital path.  The Figure depicts a satellite 
at an altitude of one Earth radius (6378 
km above the Earth’s surface).  At this 
distance, a satellite would have to travel at 

5.59 km/sec to maintain a circular orbit 
and this speed is known as its circular 
speed for this altitude.  As the satellite’s 
speed increases, it falls farther and farther 

away from the Earth and its trajectory 
becomes an elongating ellipse until the 
speed reaches 7.91 km/sec.  At this speed 
and altitude the satellite has enough 
energy to leave the Earth’s gravity and 
never return; its trajectory has now 
become a parabola, and this speed is 
known as its escape speed for this 
altitude.  As the satellite’s speed continues 
to increase beyond escape speed its 
trajectory becomes a flattened hyperbola.  
From a low Earth orbit of about 100 
miles, the escape velocity becomes 11.2 
km/sec.  In the above description, the two 
specific speeds (5.59 km/sec and 7.91 
km/sec) correspond to the circular and 
escape speeds for the specific altitude of 
one Earth radius. 

 
Fig.  8-6.  Earth’s Curvature The satellite’s motion is described by 

Newton’s three laws and his Law of 
Universal Gravitation.  The Law of 
Universal Gravitation describes how the 
force between objects decreases with the 
square of the distance between the 
objects.  As the altitude increases, the 
force of gravity rapidly decreases, and 
therefore the satellite can travel slower 
and still maintain a circular orbit.  For the 
object to escape the Earth, it has to have 
enough kinetic energy (kinetic energy is 
proportional to the square of velocity) to 
overcome the gravitational potential 
energy of its position.  Since gravitational 
potential energy is proportional to the 
distance between the objects, the farther 
the object is from the Earth, the less 
potential energy the satellite must 
overcome, which also means the less 
kinetic energy is needed.  

5.59 km\sec

5.59<vel<7.91 km/sec

vel=7.91 km/sec

vel>7.91 km/sec

6378 km  
Fig.  8-7.  Velocity versus Trajectory

 
 

ORBIT GEOMETRY 
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The two-body equation of motion 
describes conic sections.  The conic 
section an object will follow depends on 
its velocity and the magnitude of the 
central force.  If an object lacks the 
velocity (insufficient kinetic energy) to 
overcome the gravitational attraction 
(potential energy) then it will follow a 
closed path (circle or ellipse).  However, 
if the object has enough velocity to 

12Because the Earth does have an atmosphere, to 
stay in a “stable” orbit objects must be above the 
atmosphere—about 94 miles above the Earth’s 
surface.  Because the force due to gravity is in-
versely proportional to the square of the distance 
between the objects, at 94 miles an object has to 
travel at 7.8 km/sec (17,500 mph), while the Moon 
(at 249,000 miles) has to travel at only .9144 
km/sec.  (All these speeds are for circular orbits.) 



overcome the gravitational attraction then 
the object will follow an open path 
(parabola or hyperbola) and escape from 
the central force. 

Focus Apogee

Perigee

a

c c  
Fig.  8-9.  Elliptical Geometry 

Figure  8-8 shows the basic geometry 
for the various possible conic sections.  
The parameters that describe the size and 
shape of the conics are its semi-major axis 
a (half of the large axis) and eccentricity e 
(the ratio between the separation of the 
foci—linear eccentricity c—and the semi-
major axis).  

  Figure  8-9 depicts a satellite  orbit 
with additional parameters whose conic 
section is an ellipse. 
Semi-major Axis (a)—half of the distance 

between perigee and apogee, a 
measure of the orbits size, also the 
average distance from the attracting 
body. 

Linear Eccentricity (c)—half of the 
distance between the foci. 

Eccentricity (e)—ratio of the distance 
between the foci (c) to the size of the 
ellipse (a); describes the orbit’s shape. 

Perigee—the closest point in an orbit to 
the attracting body. 

Apogee—the farthest point in an orbit to 
the attracting body.  

 
These parameters apply to all 

trajectories.  A circular orbit is a special 
case of the elliptical orbit where the foci 
coincide (c = 0).  A parabolic path is a 

transition between an elliptical and a 
hyperbolic trajectory.  The parabolic path 
represents the minimum energy escape 
trajectory.  The hyperbolic is also an 
escape trajectory; and represents a 
trajectory with excess escape velocity. 

Fig.  8-8.  Conic Section Geometry 

Table 8-2 shows the values for the 
eccentricity (discussed later) for the 
various types of orbits.  Eccentricity is 
associated with the shape of the orbit.  
Energy is associated with the orbit’s size 
(for closed orbits). 

 
 

Table 8-2.  Eccentricity Values 
Conic Section Eccentricity (e) 
 
circle 

ellipse 

parabola 

hyperbola 

 
e = 0 

0 < e < 1 

e = 1 

e > 1 

 
CONSTANTS OF ORBITAL 

MOTION:  MOMENTUM AND 
ENERGY 

 
For some systems, there are basic 

properties which remain constant or fixed.  
Energy and momentum are two such 
properties required for a conservative 
system. 
 
Momentum  
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Momentum is the product of mass 
times velocity ( v vp mv= ).  This is the term 
for linear momentum and remains 
constant internal to the system in every 



direction.  In some instances it is more 
advantageous to describe motion in 
angular terms.  For example, when 
dealing with spinning or rotating objects, 
it is simpler to describe them in angular 
terms  An important angular property in 
orbital mechanics is angular momentum.  
Angular momentum is the product of 
linear momentum times the radius of 
revolution.13  This property, like linear 
momentum, remains constant internal to 
the system for such things as orbiting 
objects. 

A simple experiment can be performed 
illustrating conservation of angular 
momentum.  Starting with some object on 
the end of a string, the object may be spun 
to impart angular momentum to the 
system.  The amount of angular 
momentum depends on the object’s mass 
and velocity, and the length of the string 
(radius):  

v v vh m .  Now, if the string 
is shortened, the object will speed up (spin 
faster).  From the above equation, mass 
(m) remains constant; angular momentum 
(

(r v= × )

v
h ) must remain constant as the radius ( vr ) 

decreases, so the object’s velocity ( vv ) 
increases.  This same principle holds true 
for orbiting systems.  In an elliptical orbit, 
the radius is constantly varying and so is 
the orbital speed, but the angular 
momentum remains constant.  Hence, 
there is greater velocity at perigee than at 
apogee. 

 
Energy 
 

A system’s mechanical energy can also 
be conserved.  Mechanical energy (denoted 
by E) is the sum of kinetic energy (KE) 
and potential energy (PE): E KE PE= + .  
Kinetic energy is the energy associated 
with an object’s motion and potential 
energy is the energy associated with an 
object’s position.  Every orbit has a 
certain amount of mechanical energy.  A 
circular orbit’s radius and speed remain 
constant, so both potential and kinetic 

energy remain constant.  In all other orbits 
(elliptical, parabolic and hyperbolic) the 
“radius” and speed both change, and 
therefore, so do both the potential and 
kinetic energy in such a way that the total 
mechanical energy of the system remains 
constant.  Again, for an elliptical orbit, 
this results in greater velocity at perigee 
than apogee.  If a satellite’s position and 
velocity is known, a satellite’s orbit may 
be ascertained.  Position determines 
potential energy while velocity determines 
kinetic energy.   
 

COORDINATE REFERENCE 
SYSTEMS AND ORBITAL 

ELEMENTS 
 

Reference systems are used everyday.  
Once an agreed upon reference has been 
determined, spatial information can be 
traded.  The same must be done when 
considering orbits and satellite positions  
The reference system used depends on the 
situation, or the nature of the knowledge 
to be retrieved. 

How does one know where satellites 
are, were or will be?  Coordinate 
reference systems allow measurements to 
be defined, resulting in specific 
parameters which describe orbits.  A set 
of these parameters is a satellite’s orbital 
element set.  Two elements are needed to 
define an orbit:  a satellite’s position and 
velocity.  Given these two parameters, a 
satellite’s past and future position and 
velocity may be predicted.  

In three-dimensional spaces, it takes 
three parameters each to describe position 
and velocity.  Therefore, any element set 
defining a satellite’s orbital motion 
requires at least six parameters to fully 
describe that motion.  There are different 
types of element sets, depending on the 
use.  The Keplerian, or classical, element 
set is useful for space operations andtells 
us four parameters about orbits, namely: 

 
• Orbit size 

                                                           

l

• Orbit shape 
13Angular momentum is actually the vector cross 
product of inear momentum and the radius of 
revolution: 

v v v v vh r . p m(r v= × ⇒ ×

• Orientation 
 - orbit plane in space  
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)  - orbit within plane 



• Location of the satellite 

Ascending Node

Inclination 
Angle

Equatorial Orbit

Inclined Orbit  
 

Fig.  8-10.  Inclination Tilt 

 
Semi-Major Axis (a) 
 

.  The semi-major axis (a) describes an 
orbit’s size  and is half of the distance 
between apogee and perigee on the 
ellipse.  This is a significant measurement 
since it also equals the average radius, and 
thus is a measure of the mechanical 
energy of the orbiting object. 

 
 

Eccentricity (e) 
 
Eccentricity (e) measures the shape of 

an orbit and determines the positional 
relationship to the central body which 
occupies one of the foci.  Recall from the 
orbit geometry section that eccentricity is 
a ratio of the foci separation (linear 
eccentricity, c) to the size (semi-major 
axis, a) of the orbit: 

 
e = c/a 

 
Size and shape relate to orbit geometry, 

and tell what the orbit looks like.  The 
other orbital elements deal with 
orientation of the orbit relative to a fixed 
point in space.  

 
 

Inclination (i) 
 

The first angle used to orient the orbital 
plane is inclination (i):  a measurement of 
the orbital plane’s tilt.  This is an angular 
measurement from the equatorial plane to 
the orbital plane (0°≤ i ≤ 180°), measured 
counter-clockwise at the ascending node 
while looking toward Earth (Fig.  8-10). 

Inclination is utilized to define several 
general classes of orbits.  Orbits with 
inclinations equal to 0° or 180° are 
equatorial orbits, because the orbital 
plane is contained within the equatorial 
plane.  If an orbit has an inclination of 
90°, it is a polar orbit, because it travels 
over the poles.  If 0°≤ i < 90°, the satellite 
orbits in the same general direction as the 
Earth (orbiting eastward around the Earth) 

and is in a prograde orbit.  If 90°< i ≤
180°, the satellite orbits in the opposite 
direction of the Earth’s rotation (orbiting 
westward about the Earth) and is in a 
retrograde orbit.  Inclination orients the 
orbital plane with respect to the equatorial 
plane (fundamental plane). 

 
Right Ascension of the Ascending  
Node (Ω) 
 

Right Ascension of the Ascending 
Node, Ω (upper case Greek letter omega), 
is a measurement of the orbital plane’s 
rotation around the Earth.  It is an angular 
measurement within the equatorial plane 
from the First point of Aries eastward to 
the ascending node (0°≤ Ω ≤ 360°) (Fig.  
8-11). 

 
 
The First Point of Aries is simply a 

fixed point in space.  The Vernal Equinox 
is the first day of spring (in the northern 
hemisphere).  However, for the 
astronomer, it has added importance 
because it is a convenient way of fixing 
this principle direction.  The Earth’s 

Line of Nodes

Inclined Orbit

Perigee

Argument of Perigee,
Approximately 270 deg

Ascending Node

 
Fig.  8-13.  Argument of Perigee 
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The ancient astronomers called this the 
First Point of Aries because, at the time, 
this line pointed at the constellation Aries. 
The Earth is spinning like a top, and like a 
top, it wobbles on its axis.  It takes 
approximately 25,800 years for the axis to 
complete one revolution.  With the axis 
changing over time, so does the equatorial 
plane’s orientation.  The intersection 
between the ecliptic and the equatorial 
plane is rotating westward around the 
ecliptic.  With this rotation, the principle 
direction points to different constellations.  
Presently, it is pointing towards Pisces.  
The orbital elements for Earth satellites 
are referenced to inertial space (a non-
rotating principle direction) so the orbital 
elements must be referenced to where the 
principle direction was pointing at a 
specific time.  The orbital analyst does 
this by reporting the orbital elements as 
referenced to the mean of 1950 (a popular 
epoch year reference).  Most analysts 
have updated their systems and are now 
reporting the elements with respect to the 
mean of 2000.  

Ascending Node

Line of Nodes

0 degrees = First Point of Aries

0

45
180

225315

135

Inclined Orbit

 
Fig.  8-11.  Right Ascension of the Ascending Node

equatorial plane and its orbit about the 
Sun provide the principle direction.  The 
Earth orbits about the Sun in the ecliptic 
plane, and this plane passes through the 
centers of both the Sun and Earth; the 
Earth’s equatorial plane passes through 
the center of the Earth, which is tilted at 
approximately 23° to the ecliptic.  The 
intersection of these two planes forms a 
line that passes though Earth’s center and 
passes through the Sun’s center twice a 
year: at the Vernal and Autumnal 

Equinoxes.  The ancient astronomers 
picked the principle direction as that from 
the Sun’s center through the Earth’s 
center on the first day of Spring, the 
Vernal Equinox (Fig.  8-12). 

Fig.  8-12.  Vernal Equinox 

 
Argument of Perigee (ω) 

 
Inclination and Right Ascension fix the 

orbital plane in inertial space.  The orbit 
must now be fixed within the orbital 
plane.  For elliptical orbits, the perigee is 
described with respect to inertial space.  

The Argument of Perigee, ω (lower 
case Greek letter omega), orients the orbit 
within the orbital plane.  It is an angular 
measurement within the orbital plane from 
the ascending node to perigee in the 
direction of satellite motion (0°≤ ω ≤ 360°) 
(see Fig.  8-13). 
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Table 8-3.  Classical Orbital Elements   
Element Name Description Definition Remarks 

a semi-major 
axis 

orbit size half of the long axis of the 
ellipse 

orbital period and energy 
depend on orbit size 

e eccentricity orbit shape ratio of half the foci 
separation (c) to the semi-

major axis 

closed orbits:  0 ≤ e < 1 
open orbits:  1 ≤ e 

i inclination orbital plane’s 
tilt 

angle between the orbital 
plane and equatorial plane, 

measured counterclockwise at 
the ascending node 

equatorial:  i = 0° or 180° 
prograde:  0° ≤ i < 90° 

polar:  i = 90° 
retrograde:  90° < i ≤ 180° 

Ω right 
ascension of 

the 
ascending 

node 

orbital plane’s 
rotation about 

the Earth 

angle, measured eastward, 
from the vernal equinox to the 

ascending node 

0° ≤ Ω < 360° 
undefined when i = 0° or 

180° 
(equatorial orbit) 

ω argument of 
perigee 

orbit’s 
orientation in 

the orbital plane 

angle, measured in the 
direction of satellite motion, 
from the ascending node to 

perigee 

0° ≤ ω < 360° 
undefined when i = 0° or 

180°, 
or e = 0 (circular orbit) 

ν true 
anomaly 

satellite’s 
location in its 

orbit 

angle, measured in the 
direction of satellite motion, 
from perigee to the satellite’s 

location 

0° ≤ ν < 360° 
undefined when e = 0 

(circular orbit) 

 the ascending node and provide the value 
for True Anomaly. True Anomaly (ν) 

 There are different types of element 
sets.  However, usually only orbital 
analysts deal with these sets.  The 
Keplerian, or classical element, is the only 
element relevant to a majority of space 
operations.  Table 8-3 summarizes the 
Keplarian orbital element set, and orbit 
geometry and its relationship to the Earth. 

At this point all the orbital parameters 
needed to visualize the orbit in inertial 
space have been specified.  The final step 
is to locate the satellite within its orbit. 
True Anomaly, ν (lower case Greek letter 
nu), is an angular measurement that 
describes where the satellite is in its orbit 
at a specified time, or Epoch.  It is 
measured within the orbital plane from 
perigee to the satellite’s position in the 
direction of motion (0°≤ν≤360°). 

 
ORBIT CHARACTERISTICS 

 
Inclination (i) alone determines the 

four general orbit classes:  True Anomaly locates the satellite with 
respect to time and is the only orbital 
element that changes with time.  There are 
various conventions for describing True 
Anomaly and Epoch.  By fixing one, the 
other is also fixed.  Sometimes they will 
choose True Anomaly  to be 0° and give 
the Epoch as the time of perigee passage;  

 
Prograde — 0° ≤ i < 90° 
Retrograde — 90° < i ≤ 180° 
Equatorial — i = 0°, 180° 
Polar — i = 90° 
 
 

or they will choose the Epoch as the 
moment when the satellite passes through  

 
 

  
 

Other common orbits include those 
used for communication, weather and 
navigation: 
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Geostationary Period =23hrs56min 
 i = 0° 
 e = 0 
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GeosynchronousPeriod =23hrs56min 
Molniya Period =11hrs58min 
 i = 63.4° 
 e = .72 
Sun-synchronousPeriod=1hr41min 
 i = 98° 
Semi-synchronous-Period =11hr58min 

 
GROUND TRACKS 

 
The physics of two-body motion 

dictates the motions of the bodies will lie 
within a plane (two-dimensional motion).  
The orbital plane intersects the Earth’s 

surface forming a great circle.  A 
satellite’s ground track is the intersection 
of the line between the Earth’s center and 
the satellite, and the Earth’s surface; the 
point on the line at the surface of the 
Earth is called the satellite subpoint.  The 
ground track, then, is the path the satellite 
subpoint traces on the Earth’s surface over 
time (Fig.  8-14).  However, the Earth 
does rotate on its axis at the rate of one 
revolution per 24 hours.  With the Earth 
rotating under the satellite, the 

intersection of the orbital plane,14 and the 
Earth’s surface is continually changing. 

The ground track is the expression of 
the relative motion of the satellite in its 
orbit to the Earth’s surface rotating 
beneath it.  Because of this relative 
motion, ground tracks come in almost any 
form and shape imaginable.  Ground track 
shape depends on many factors: 

Inclination  i 
Period P 
Eccentricity e 
Argument of Perigee ω 

 
Inclination defines the tilt of the orbital 

plane and therefore, defines the maximum 
latitude, both North and South of the 
ground track. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  8-14.  Ground Track 

The period defines the ground track’s 
westward regression.  With a non-rotating 
Earth, the ground track would be a great 
circle.  Because the Earth does rotate, by 
the time the satellite returns to the same 
place in its orbit after one revolution, the 
Earth has rotated eastward by some 
amount, and the ground track looks like it 
has moved westward on the Earth’s 
surface (westward regression).  The 
orientation of the satellite’s orbital plane 
does not change in inertial space, the 
Earth has just rotated beneath it.  The time 
it takes for the satellite to orbit (its orbital 
period) determines the amount the Earth 
rotates eastward and hence its westward 
regression. 

 
 
 
 
 
 
 
 
 

Fig.  8-15. 

 
1

Figure 8-15
Earth’s rotation

14Except for equa
is contained withi
2

7/23/2003 

                             

 Earth’s Rotation Effects 

3

 shows the effect of the 
 on the ground track. The 

 
torial orbits, whose orbital plane 
n the equatorial plane. 



 
 
 
 
 
 
 
 
 
 
 
 

Fig.  8-16.  Geostationary Orbit/Ground Track 

Earth rotates through 360° in 24 hours, 
giving a rotation rate of 15°/hr.15  With a 
period of 90 min., a satellite’s ground 
trace regresses 22.5° westward per 
revolution (15°/hr × 1.5 hrs= 22.5°). 
Westward regression is the angle through 
which the Earth has rotated underneath 
the satellite during the time it takes the 
satellite to complete one orbit. 

Eccentricity affects the ground track 
because the satellite spends different 
amounts of time in different parts of its 
orbit (it’s moving faster or slower).  This 
means it will spend more time over certain 
parts of the Earth than others.  This has 
the effect of creating an unsymmetrical 
ground track.  It is difficult to determine 
how long the satellite spends in each 
hemisphere by simply looking at the 
ground trace.  The time depends on both 
the length of the trace and the speed of the 
satellite.  

Argument of perigee skews the ground 
track.  For a prograde orbit, at perigee the 
satellite will be moving faster eastward 
than at apogee; in effect, tilting the ground 
track. 
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A general rule of thumb is that if the 
ground track has any portion in the 
eastward direction, the satellite is in a 
prograde orbit.  If the ground trace does 
not have a portion in the eastward 
direction, it is either a retrograde orbit or 
it could be a super-synchronous prograde 
orbit. 

 
Relative Motions 

 
Because the Earth is a rotating the 

velocity of points on the surface is 
different depending on their distance from 
the Earth’s axis of rotation.  In other 
words, points on the equator have a greater 
eastward velocity than points north and 
south of the equator.  

Figure 8-16 conceptualizes a geo-
stationary orbit and its ground track.  A 

satellite in a ideal geostationary orbit has 
the same orbital period as the Earth’s 
rotational period, its inclination is 0° and 
its eccentricity is 0.  The ground track will 
remain in the equatorial plane, the 
westward regression will be 360° and the 
satellite’s speed never changes.  
Therefore, from the earth, the ground 
track will be a point on the equator. 

Now take the same orbit and give it an 
inclination of 45°).  

The period and eccentricity remain the 
same.  The westward regression will be 

360° so the ground trace will retrace itself 
with every orbit.  The ground trace will 
also vary between 45° North and 45° 
South. The apparent ground trace looks 
like a figure eight(Fig.  8-17 for the 
simplest case.  If the orbital parameters 
are varied (such as eccentricity and 
argument of perigee), the relative motions 
of the satellite and the  

 
Fig.  8-17.  Ground Traces of Inclined, Circular, 

Synchronous Satellites 

 
15In reality, the 28-hour rotation rate is with re-
spect to the Sun and is called the solar day.  The 
rotation rate with respect to inertial space (the 
fixed stars, or background stars) is actually 23 hrs 
56 min and is called the sidereal day. 



 
 
 
 
 
 

          HHiigghh  
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Fig.  8-18.  Semi-synchronous Orbit 

 
 
 

          Highly 
        Elliptical 
 
 
  Inclination (63.4°/116.6°) 
  Altitude: 200-23,800 Mile 

 
 
 
 
 
 
 
 

Fig.  8-19.  Molniya Orbit 

 
Earth’s surface can become quite 

complicated.  For orbits with small 
inclinations, the eccentricity and argument 
of perigee dominate the effect of the 
Earth’s surface speed at different latitudes 
and can cause the ground track to vary 
significantly from a symmetric figure 
eight.  These parameters can be combined 
in various ways to produce practically any 
ground track. 
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The semi-synchronous orbit (used by 
the Global Positioning System) also 
provides a unique ground track.  This 
orbit, with its approximate 12-hour 
period, repeats twice a day.  Since the 
Earth turns half way on its axis during 
each complete orbit, the points where the 
sinusoidal ground tracks cross the equator 
coincide pass after pass and the ground 
tracks repeat each day (Fig.  8-18). 

 
Figure  8-19 shows a typical Molniya 

orbit that might be used for northern 
hemispheric communications.  The 
Russians are credited with the discovery 
of this ingenious orbit.  With the high 
degree of eccentricity the satellite travels 
slowly at apogee and can hang over the 
Northern Hemisphere for about two thirds 
of its period.  Since the period is 12 hours, 

the ground track retraces itself every day, 
much the same as the semi-synchronous 
orbit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  8-20.  Sun-synchronous Orbit 

5    4   3   2    1  
 

. 
Figure 8-20 shows a representative 

sun-synchronous orbit.  In this case, the 
orbital elements represent a DMSP 
(Defense Meteorological Satellite 
Program) satellite.  The satellite is in a 
slightly retrograde orbit; therefore, the 
satellite travels east to west along the 
track.. 
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A sun-synchronous orbit is one in 
which the orbital plane rotates eastward 
around the Earth at the same rate that the 
Earth orbits the Sun.  So, the orbit must 
rotate eastward around the Earth at a little 
less than 1°/day {(360°/year)/(365.25 
days/ year) = .986°/day}.  This 
phenomenon occurs naturally due to the 
oblateness of the Earth (see the section on 
perturbations). 

Sun-synchronous orbits can be 
achieved at different altitudes and 
inclinations.  However, all the inclinations 
for sun-synchronous satellites are greater 
than 90° (retrograde orbits).  Figure  8-21 
plots inclination versus altitude for sun-
synchronous orbits. 

 
LAUNCH CONSIDERATIONS 

 
The problem of launching satellites 

comes down to geometry and energy.  If 
there were enough energy, satellites could 
be launched from anywhere at any time 
into any orbit.  However, energy is limited 
and so is cost. 

When a satellite is launched, it is 
intended to end up in a specific orbit, not 
only with respect to the Earth, but often 
with respect to an existing constellation.  
Also, the geometry of the planets must be 
taken into consideration when launching 
an interplanetary probe.  Meeting 
operational constraints determines the 
launch window.  The launch system is 
designed to accomplish the mission with 
the minimum amount of energy required 
because it is usually less 

expensive.16Keeping energy to a 
minimum restricts the launch trajectories 
and the launch location. 

 
Fig.  8-21.  Inclination versus Altitude 

Launch site latitude and orbit 
inclination are two important factors 
affecting how much energy boosters have 
to supply.  Orbit inclination depends on 
the satellite’s mission, while launch site 
latitude is, for the most part, fixed (to our 
existing launch facilities).17  Only 
minimum energy launches (direct launch) 
will be addressed.  A minimum energy is 
one in which a satellite is launched 
directly into the orbital plane (i.e., no 
plane change or inclination maneuver).By 
looking at the geometry, the launch site 
must pass through the orbital plane to be 
capable of directly launching into that 
plane.  Imagine a line drawn from the 
center of the Earth through the launch site 
and out into space.  After a day, this line 
produces a conical configuration due to 
the rotation of the Earth.  A satellite can 
be launched into any orbital plane that is 
tangent to, or passes through, this cone.  
As a result of this geometry, the lowest 
inclination that can be achieved by 
directly launching is equal to the latitude 
of the launch site.  

If the orbital plane inclination is greater 
than the launch site latitude, the launch 
site will pass through the orbital plane 
twice a day, producing two launch 
windows per day.  If the inclination of the 
orbital plane is equal to the launch site 
latitude, the launch site will be coincident 
with the orbital plane once a day, 
producing one launch window a day.  If 
the inclination is less than the launch site 
latitude, the launch site will not pass 
through, or be coincident with the orbital 
plane at any time, and so there will not be 
any launch windows for a direct launch. 

                                                           
16There are some situations when it is less expen-
sive to use an existing system with extra energy 
because a lower class booster will not meet the 
mission needs.  In this case, there is an extra mar-
gin and the launch windows are larger. 
17There are various schemes to get around the 
problem of fixed launch sites:  air launch, sea 
launch, and portable launch facilities, for instance.  



A simplified model for determining 
inclination from launch site latitude and 
launch azimuth is:18 

( ) ( ) ( )AzLi sincoscos •=  
 i = inclination 
 L = launch site latitude  
 Az = launch azimuth 
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The cosine of the latitude reduces the 
range of possible inclinations and the sine 
of the azimuth varies the inclination 
within the reduced range.  When viewing 
the Earth and a launch site, it is possible 
to launch a satellite in any direction 
(launch azimuth).  The orbital plane must 
pass through the launch site and the center 
of the Earth. 

For launches due east (no matter what 
the launch site latitude) the inclination 
will equal the launch site latitude.  For 
launches on any other azimuth, the 
inclination will always be greater than the 
launch site latitude.  

Just as the launch site latitude 
determines the minimum inclination 
(launching due east), it also determines 
the maximum inclination by launching 
due west.  The maximum inclination is 
180 minus the latitude. 

The actual launch azimuths allowed (in 
most countries) are limited due to the 
safety considerations of not launching 
over populated areas, which further limits 
the possible inclinations from any launch 
site.  However, the inclination can change 
after launch by performing an out of plane 
maneuver (see next section). 

 
Launch Velocity 

 
When a satellite is launched, energy is 

imparted to it.  The two tasks of 
increasing the satellite’s potential and 
kinetic energies must be accomplished.  
Potential energy is increased by raising 
the satellite above the Earth (increasing its 
altitude by at least 90-100 miles).  In 
order to maintain a minimum circular 
orbit at that altitude, the satellite has to 

travel about 17,500 mph.  Due to the 
Earth’s rotation, additional kinetic energy 
may need to be supplied depending on 
launch azimuth to achieve this orbital 
velocity (17,500 mph).  The starting 
velocity at the launch sites vary with 
latitude.  It ranges from zero mph at the 
poles to 1,037 mph at the equator.  

If a satellite is launched from the 
equator prograde (in the same direction as 
the earth’s rotation) starting with 1,037 
mph, only 16,463 mph must be supplied 
(17,500 mph- 1,037 mph).  If launched 
from the equator retrograde (against the 
rotation of the earth), 18,537 mph must be 
supplied.  Launching with the earth’s 
rotation saves fuel and allows for larger 
payloads for any given booster. 

There are substantial energy savings 
when locating launch sites close to the 
equator and launching in a prograde 
direction.   

 
ORBITAL MANEUVERS 

 
It is a rare case indeed to launch 

directly into the final orbit.  In general, a 
satellite’s orbit must change at least once 
to place it in its final mission orbit.  Once 
a satellite is in its mission orbit, 
perturbations must be counteracted, or 
perhaps the satellite must be moved into 
another orbit. 

                                                           

                                                          

As was previously mentioned, a 
satellite’s velocity and position determine 
its orbit.19  Thus, one of these parameters 
must be changed in order to change its 
orbit.  The only option is to change the 
velocity, since position is relatively 
constant.  By changing the velocity, the 
satellite is now in a different orbit.  Since 
gravity is conservative, the satellite will 
always return to the point where it 
performed the maneuver (provided it 
doesn’t perform another maneuver before 
returning). 

 
19The position and velocity correspond to the 
force of gravity and the satellite’s momentum. 
Knowing the forces on the satellite and its momen-
tum, we can apply Newton’s second law and pre-
dict its future positions (in other words, we know 
its orbit). 

18This is a simplified model because it ignores the 
Earth’s rotation, which has a small effect. 
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Mission Considerations 

 
Since both position and velocity 

determine a satellite’s orbit, and many 
different orbits can pass through the same 
point, the velocity vectors must differ20 to 
result in a different orbit while passing 
through the same point. 

When an orbit is changed through its 
velocity vector, a delta-v (∆v) is 
performed.  For any single ∆v orbital 
change, the desired orbit must intersect 
the current orbit, otherwise it will take at 
least two ∆vs to achieve the final orbit. 

When the present and desired orbits 
intersect, a ∆v is employed to change the 
satellite’s velocity vector.  The ∆v vector 
can be determined by subtracting the 
present vector from the desired vector.  
The resultant velocity vector is the ∆v 
required to get from one point to another.  

 
PERTURBATIONS 

 
Perturbations are forces which change 

the motion (orbit) of the satellite.  These 
forces have a variety of causes/origins and 
effects.  These forces are named and 
categorized in an attempt to model their 
effects.  The major perturbations are: 

 
• Earth’s oblateness; 
• Atmospheric drag; 
• Third-body effects; 
• Solar wind/radiation pressure; 
• Electromagnetic drag. 

 
 
Earth’s Oblateness 

 
The Earth is not a perfect sphere.  It is 

somewhat misshapen at the poles and 
bulges at the equator.  This squashed 
shape is referred to as oblateness.  The 
North polar region is more pointed than 
the flatter South polar region, producing a 
slight “pear” shape.  The equator is not a 
perfect circle; it is slightly elliptical.  The 
effects of Earth’s oblateness are 
                                                           

                                                          

20 Remember that velocity is a vector — it has 
both a magnitude and a direction. 

gravitational variations or perturbations, 
which have a greater influence the closer 
a satellite is to the Earth.  This bulge is 
often modeled with complex mathematics 
and is frequently referred to as the J2 
effect.21  For low to medium orbits, these 
influences are significant.  

One effect of Earth’s oblateness is 
nodal regression.  Westward regression 
due to Earth’s rotation under the satellite 
was discussed in the ground tracks 
section.  Nodal regression is an actual 
rotation of the orbital plane, relative to the 
First Point of Aries,  about the Earth (the 
right ascension changes).  If the orbit is 
prograde, the orbital plane rotates 
westward around the Earth (right 
ascension decreases); if the orbit is 
retrograde, the orbital plane rotates 
eastward around the Earth (right 
ascension increases).  

In most cases, perturbations must be 
counteracted.  However, in the case of 
sun-synchronous orbits, perturbations can 
be advantageous.  In the slightly 
retrograde sun-synchronous orbit, the 
angle between the orbital plane and a line 
between the Earth and the Sun needs to 
remain constant.  As the Earth orbits 
eastward around the Sun, the orbital plane 
must rotate eastward around the Earth at 
the same rate.  Since it takes 365 days for 
the Earth to orbit the Sun, the sun-
synchronous orbit must rotate about the 
Earth at just under one degree per day.  
The oblateness of the Earth perturbs the 
orbital plane by nearly this amount. 

A sun-synchronous orbit is beneficial 
because it allows a satellite to view the 
same place on Earth with the same sun 
angle (or shadow pattern).  This is very 
valuable for remote sensing missions 
because they use shadows to measure 
object height.22 

 
21J2 is a constant describing the size of the bulge 
in the mathematical formulas used to model the 
oblate Earth. 
22With a constant sun angle, the shadow lengths 
give away any changes in height, or any shadow 
changes give clues to exterior configuration 
changes. 
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Another significant effect of Earth’s 
asymmetry is apsidal line rotation.  Only 
elliptical orbits have a line of apsides and 
so this effect only affects elliptical orbits.  
This effect appears as a rotation of the 
orbit within the orbital plane; the 
argument of perigee changes.  At an 
inclination of 63.4° (and its retrograde 
compliment, 116.6°), this rotation is zero.  
The Molniya orbit was specifically 
designed with an inclination of 63.4° to 
take advantage of this perturbation. With 
the zero effect at 63.4° inclination, the 
stability of the Molniya orbit improves 
limiting the need for considerable on-
board fuel to counteract this rotation. At a 
smaller inclination (but larger than 
116.6°), the argument of perigee rotates 
eastward in the orbital plane; at 
inclinations between 63.4° and 116.6°, the 
argument of perigee rotates westward in 
the orbital plane.  This could present a 
problem for non-Molniya communications 
satellites providing polar coverage.  If the 
apogee point rotated away from the 
desired communications (rotated from the 
Northern to Southern Hemisphere), the 
satellite would be useless.  

The ellipticity of the equator has an 
effect that shows up most notably in 
geostationary satellites (also in inclined 
geosynchronous satellites).  Because the 
equator is elliptical, most satellites are 
closer to one of the lobes and experience a 
slight gravitational misalignment.  This 
misalignment affects geostationary 
satellites more because they view the 
same part of the earth’s surface all the 
time, resulting in a cumulative effect.  

The elliptical force causes the subpoint 
of the geostationary satellite to move east 
or west with the direction depends on its 
location.  There are two stable points at 75 
East and 105 West, and two unstable 
stable points 90° out (165 East and 5 
West).23  

 

                                                           
23A stable point is like a marble in the bottom of a 
bowl; an unstable stable point is like a marble per-
fectly balanced on the top of a hill. 

Atmospheric Drag 
 
The Earth’s atmosphere does not 

suddenly cease; rather it trails off into 
space.  However, after about 1,000 km 
(620 miles), its effects become minuscule.  
Generally speaking, atmospheric drag can 
be modeled in predictions of satellite 
position.  The current atmospheric model 
is not perfect because of the many factors 
affecting the upper atmosphere, such as 
the earth’s day-night cycle, seasonal tilt, 
variable solar distance, fluctuation in the 
earth’s magnetic field, the suns 27-day 
rotation and the 11-year sun spot cycle.  
The drag force also depends on the 
satellite’s coefficient of drag and frontal 
area, which varies widely between 
satellites.  

The uncertainty in these variables 
cause predictions of satellite decay to be 
accurate only for the short term.  An 
example of changing atmospheric 
conditions causing premature satellite 
decay occurred in 1978-1979, when the 
atmosphere received an increased amount 
of energy during a period of extreme solar 
activity.  The extra solar energy expanded 
the atmosphere, causing several satellites 
to decay prematurely, most notably the 
U.S. space station SKYLAB. 

The highest drag occurs when the 
satellite is closest to the earth (at perigee), 
and has a similar effect in performing a 
delta-V at perigee; it decreases the apogee 
height, circularizing the orbit.  On every 
perigee pass, the satellite looses more 
kinetic energy (negative delta-V), 
circularizing the orbit more and more until 
the whole orbit is experiencing significant 
drag, and the satellite spirals in. 

 
Third Body Effects 

 
According to Newton’s law of 

Universal Gravitation, every object in the 
universe attracts every other object in the 
universe.  The greatest third body effects 
come from those bodies that are very 
massive and/or close such as the Sun, 
Jupiter and the Moon. These forces ffect 
satellites in orbits as well.  The farther a 
satellite is from the Earth, the greater the 
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third body forces are in proportion to 
Earth’s gravitational force, and therefore, 
the greater the effect on the high altitude 
orbits. 

 
Radiation pressure 
 

The Sun is constantly expelling atomic 
matter (electrons, protons, and Helium 
nuclei).  This ionized gas moves with high 
velocity through interplanetary space and 
is known as the solar wind.  The satellites 
are like sails in this solar wind, alternately 
being speeded up and slowed down, 
producing orbital perturbations. 

 
Electromagnetic Drag 

 
Satellites are continually traveling 

through the Earth’s magnetic field.  With 
all their electronics, satellites produce 
their own localized magnetic fields which 
interact with the earth’s, causing torque 
on the satellite.  In some instances, this 
torque is advantageous for stabilization.  
More specifically, satellites are basically a 
mass of conductors. Passing a conductor 
through a magnetic field causes a current 
in the conductor, producing electrical 
energy.  Some recent experiments used a 
long tether from the satellite to generate 
electrical power from the earth’s magnetic 
field (the tether also provided other 
benefits).  

The electrical energy generated by the 
interaction of the satellite and the earth’s 
magnetic field comes from the satellite’s 
kinetic energy about the earth.  The 
satellite looses orbital energy, just as it 
does with atmospheric drag, which results 
in orbital changes.  The magnetic field is 
strongest close to the Earth where 

satellites travel the fastest.  Thus, this 
effect is largest on low orbiting satellites.  
However, the overall effect due to 
electromagnetic forces is quite small. 

 
DEORBIT AND DECAY 

 
So far the concern has been with 

placing and maintaining satellites in orbit.  
When no longer useful, satellites must be 
removed from their operational orbit.  
Sometimes natural perturbations such as 
atmospheric drag take care of disposal, 
but not always. 

For satellites passing close to the earth 
(low orbit or highly elliptical orbits), 
satellites can be programmed to re-enter, 
or they may re-enter autonomously.  
Deliberate re-entry of a satellite with the 
purpose of recovering the vehicle intact is 
called deorbiting.  This is usually done to 
recover something of value:  people, 
experiments, film, or the vehicle itself.  
The natural process of spacecraft (or any 
debris – rocket body, payload, or piece) 
eventually re-entering Earth’s atmosphere 
is called decay.  
 In some situations, the satellites are in 
such stable orbits that natural 
perturbations will not do the disposal job .  
In these situations, the satellite must be 
removed from the desirable orbit.  To 
return a satellite to earth without 
destroying it takes a considerable amount 
of energy.  Obviously, it is impractical to 
return old satellites to earth from a high 
orbit.  The satellite is usually boosted into 
a slightly higher orbit to get it out of the 
way, and there it will sit for thousands of 
years. 
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